Spatially dependent turbulence and particle diffusion in an interplanetary magnetic flux rope

 SH33B-1837Watcharawuth Krittinatham ${ }^{1}$, David Ruffolo ${ }^{2,3}$, John W. Bieber ${ }^{4}$

NARIT There bis

1.Introduction

thterplanetary Coronal Mass Ejections (ICMEs) are large-scale plasma bubbles and magnetic field structures expelled from the Sun into space
Some ICMEs have large and smooth rotation of magnetic field lines, implying an "interplanetary magnetic flux rope (IMFR).
hen an IMFR sweeps past Earth, it deflects away some Galactic Cosmic Rays (GCRs) that ould otherwise strike our planet from all directions, then the GCRs have a lower density inside he IMFR and the ground-
Forbush Decreases (FDs)

We consider how GCRs fill the flux rope until the signal comes close to its ambient level.

[leff] Figure 1: Forbush Decrease and recovery to ambient intensity in July 1982 detected by Deep River, Mt.Wellington, and Kerguelen neutron monitor (from Cane [1]).

2.Systematic physical processes of GCR transport

- Parallel to the mean magnetic field: streaming and focusing

conserving the first adiabatic invariant.
Perpendicular to the mean magnetic field: gradient drift $\left(v_{g}\right)$ and curvature drift (v_{c}).
The equation of the motion of the guiding center is
$d \mathbf{r} / d t=\mu v \mathbf{b}+\mathbf{v}_{g}+\mathbf{v}_{c}$ where the pitch angle cosine
An analytic IMFR model developed by [2] in quasi-toroidal
coordinates (r, ϕ, θ) relative to a circle of radius R, which is the axis of flux rope. A flux surface is defined by $r=a \cos (\phi / 2)$, where a is the radius of the flux surface at the apex of the rope $(\phi=0)$ (see Fig. 2) Examples of some trapped-particle trajectories (Fig. 3a) in terms of μ, and the distance from the Sun along the loop $Z=R(\pi-\phi)$, for varying initial μ_{0} at the apex. These trajectories exhibit magnetic mirroring.
The drift velocity across the flux rope surface, $v_{n}=\left(v_{g}+v_{c}\right) \hat{n}$, where \hat{n} is the outward normal to the surface, yields an inflow rate (Fig.3b) and outlow rate (Fig.3c) averaged over the flux rope surface averaged over θ) as a function of μ and Z. The drifts across the flux ope boundary are predominantly inward along one leg of the loop a Foutward along the other, ontribute a unidirectional nisotropy and net fiow of GCRs. The flow direction is determined by $\mathrm{km} \mathrm{s}^{-1}$

3.Stochastic processes and spatial dependence of turbulence

Magnetic turbulence described by the $2 D+$ Slab model of [3]: $\mathbf{B}=B_{m} \hat{z}+\mathbf{b}(x, y, z)=B_{m} \hat{z}+\mathbf{b}_{2 D}(x, y)+\mathbf{b}_{S L}(z)$,朝 2 is the mean magnetic field, and $\mathbf{b}_{2 D}(x, y)$ and $\mathbf{b}_{S L}(z)$ are transverse fluctuation field.
Field Line Random Walk (FLRW): Particles diffuse because they undergo no parallel scattering and are tied to a feld line, which undergoes a random walk.
The Non-Linear Guiding Center (NLGC)theory is based on the FLRW, parallel diffusion along the mean field, and diffusion of guiding center $[4,5]$.
Pitch angle scattering: particles scattered by parallel force $\mathbf{F}_{\|}=q \mathbf{v}_{\perp} \times \mathbf{b}$, which randomly changes the pitch angle Assumption: flux rope originally had uniform turbulence, but during expansion and stretching of the ICME, at elative speeds faster than the Alfvén speed, turbulence properties became non-uniform.
Assumption: 2D correlation length $I_{2 D}$, expands as a perpendicular length scale proportional to the flux rope radius: $I_{2 D}=I_{2 D, A \text { Apex }} \cos (\phi / 2)$
Assumption: Slab correlation length, $I_{S L}$, is stretched along with the loop like the field line winding:
$I_{S L}=I_{S L, A p e x} / \cos (\phi / 2)$.
Spatial dependence of turbulent energy density b^{2} is related to local expansion/stretching of the volume, giving $\mathbf{b}=\mathbf{b}_{\text {Apex }} / \sqrt{\cos (\phi / 2)}$.

[fff Figure 2: Global, analytic magnetic flux rope model [2] gure 2: Global, analytic magnetic flux rope model [2]. Z (b) Inflow rate and (c) outtlow rate der the surface of the flux rope(averaged over θ) as a function of μ and Z in units of $A U$ km s

4 Results

We use an energy ratio $E_{S L} / E_{2 D}=10.0 / 90.0,\left\langle b_{S L}^{2}\right\rangle /\left\langle b_{2 D}^{2}\right\rangle=0.18, b^{2} / B_{m}^{2}=0.05, l_{2 D, A p e x}=0.006 \mathrm{AU}$, and 1 use $=0.003 \mathrm{AL}$
The particles' perpendicular mean free path and diffusion coefficients calculated from the NLGC theory compared with the results from the FLRW theory are shown in Fig. 5
We simulate GCR motion by initially placing the guiding centers of protons of 1 GeV kinetic energy at flux rope surface. Then we trace the trajectories due to systematic and stochastic processes. as mentioned before. The results are space), integrating over the entire rope (integrate over ϕ) as a function of time.

[leff] Figure 5: (a) Comparison of parallel diffusion mean free path calculated from quasilinear theory at various flux surfaces $a=0.0,0.05$, and 0.10 AU . (b) Perpendicular mean free paths calculated from FLRW (solid lines) and NLGC theory (dashed lines). Because the difference is not great, and FLRW is much faster to compute, we employ this theory in the simulations.
center] Figure 6: The position of guiding centers in integrated cross-section of flux rope at various times from a simulation with systematic processes only (streaming, focusing, and drifts).
[right] Figure 7: Same as Fig. 6 but adding stochastic processes to the simulation.

5.Conclusions

- The drifts alone cannot transport the GCRs into the inner portion of the rope
- The drifts alone do not are not sufficient to fill the flux rope with GCRs to come close to an ambient level over a time scale of several hours.
In a weak turbulence environment such as that inside a magnetic cloud, the particles' perpendicular mean free path and perpendicular diffusion coefficient can be similar for FLRW \& NLGC theories (see also [5]).
- The perpendicular mean free path at the center of the IMFR is short, and becomes longer away from the flux rope axis. The parallel mean free path is very long in the loop leg regions, and then shorter at the flux rope's apex
The perpendicular mean free path is short at the loop leg regions, and then longer at the flux rope's apex.
When adding stochastic processes such as perpendicular diffusion and pitch angle scattering, the particle is able to travel into the center region of an IMFR

6.References

Acknowledgements
[1] H. V. Cane 2000, J. Geophys. Res., 98,3509 [2] W. Krittinatham, D. Ruffolo 2009, Astrophys. J., 704, 831

This work is partially supported by the Thailand Research Fund and [3] W. H. Matthaeus et al. 1995, Phys. Rev. Lett., 75, 2136 [4] W. H. Matthaeus et al. 2003, Astrophys. J., 590, L53 NASA grant NNX07AH73G

